均質圓環(huán)的質量為m,半徑為R,圓環(huán)繞O軸的擺動規(guī)律為φ=ωt,ω為常數(shù)。圖示瞬時圓環(huán)對轉軸O的動量矩為:()
A.mR2ω
B.2mR2ω
C.3mR2ω
D.(1/2)mR2ω
您可能感興趣的試卷
你可能感興趣的試題
A、B兩物塊置于光滑水平面上,并用彈簧相連,如圖所示。當壓縮彈簧后無初速地釋放,釋放后系統(tǒng)的動能和動量分別用T、P表示,則有:()
A.T≠0,P=0
B.T=0,P≠0
C.T=0,P=0
D.T≠0,P≠0
圖示曲柄連桿機構中,OA=r,AB=2r,OA、AB及滑塊B質量均為m,曲柄以ω的角速度繞O軸轉動,則此時系統(tǒng)的動能為:()
A.(7/6)mr2ω2
B.(3/2)mr2ω2
C.(10/6)mr2ω2
D.(9/8)mr2ω2
圖示一剛性系數(shù)為k的彈簧下掛一質量為m的物塊,當物塊處于平衡時彈簧的靜伸長為δ,則當物塊從靜平衡位置下降距離h時,彈性力所做的功W為:()
A.W=(1/2)k[(h+δ)2-δ2]
B.W=(1/2)k[δ2-(h+δ)2]
C.W=(1/2)k(δ+h)2
D.W=(1/2)kh2
圖示一端固結于O點的彈簧,另一端可自由運動,彈簧的原長L0=2b/3,彈簧的彈性系數(shù)為k。若以B點處為零勢能面,則A處的彈性勢能為:()
A.kb2/24
B.5kb2/18
C.3kb2/8
D.-3kb2/8
在一重力為W的車輪的輪軸上繞有軟繩,繩的一端作用一水平力P(見圖)。已知車輪的半徑為R,輪軸的半徑為r,車輪及輪軸以中心O的回轉半徑為ρ,以及車輪與地面間的滑動摩擦系數(shù)為f,繩重和滾阻皆不計。當車輪沿地面作平動時,力P的值為:()
A.P=fWR/ρ
B.P=fWR/r
C.P=fWR/r
D.P=Fw
最新試題
力對物體的作用效應一般分為內(nèi)效應和外效應。
結構的節(jié)點O上作用著四個共面力,各力的大小分別為:F1=150N,F(xiàn)2=80N,F(xiàn)3=140N,F(xiàn)4=50N,方向如圖所示,這四個力的合力為()。
沿正立方體的前側面作用一力,則該力()。
點作曲線運動,若其法向加速度越來越大,則該點的速度()。
已知:重物m,以v勻速下降,鋼索剛度系數(shù)為k。求輪D突然卡住時,鋼索的最大張力。
如圖所示凸輪機構中,凸輪以勻角速度ω繞水平O軸轉動,帶動直桿AB沿鉛直線上、下運動,且O,A,B 共線。凸輪上與點A接觸的點為' A,圖示瞬時凸輪輪緣線上點' A的曲率半徑為ρA,點' A的法線與OA夾角為θ,OA=l。求該瞬時AB的速度及加速度
兩個均質桿AB和BC分別重P1和P2,其端點A和C用球鉸固定在水平面,另一端B由球鉸鏈相連接,靠在光滑的鉛直墻上,墻面與AC平行,如圖所示。如AB與水平線的交角為45º,∠BAC=90º,求A和C的支座約束力以及墻上點B所受的壓力。
圖示構件由直角彎桿EBD以及直桿AB組成,不計各桿自重,已知q=10kN/m,F(xiàn)=50kN,M=6kN.m,各尺寸如圖。求固定端A處及支座C的約束力。
圖示空間力系由6根桁架構成。在節(jié)點A上作用力F,此力在矩形ABDC平面內(nèi),且與鉛直線成45º。ΔEAK=ΔFBM。等腰三角形EAK,F(xiàn)BM和NDB在頂點A,B和D處均為直角,又EC=CK=FD=DM。若F=10kN,求各桿的內(nèi)力。
已知均質桿AB的質量m=4kg,長l=600mm,均勻圓盤B的質量為6kg,半徑為r=600mm,作純滾動。彈簧剛度為k=2N/mm,不計套筒A及彈簧的質量。連桿在與水平面成30º角時無初速釋放。求(1)當AB桿達水平位置而接觸彈簧時,圓盤與連桿的角速度;(2)彈簧的最大壓縮量δmax