A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
您可能感興趣的試卷
你可能感興趣的試題
A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時(shí),混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時(shí)不會存在問題
A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
以下是哪一個(gè)聚類算法的算法流程()。
①構(gòu)造k-最近鄰圖。
②使用多層圖劃分算法劃分圖。
③repeat:合并關(guān)于相對互連性和相對接近性而言,最好地保持簇的自相似性的簇。
④until:不再有可以合并的簇。
A.MST
B.OPOSSUM
C.Chameleon
D.Jarvis-Patrick(JP)
最新試題
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
數(shù)據(jù)存儲體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會返回零的概率估計(jì)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時(shí)間。