A.不一致
B.重復(fù)
C.不完整
D.含噪聲
E.維度高
您可能感興趣的試卷
你可能感興趣的試題
A.矩陣
B.平行坐標(biāo)系
C.星形坐標(biāo)
D.散布圖
E.Chernoff臉
A.忽略元組
B.使用屬性的平均值填充空缺值
C.使用一個(gè)全局常量填充空缺值
D.使用與給定元組屬同一類的所有樣本的平均值
E.使用最可能的值填充空缺值
A.統(tǒng)計(jì)
B.計(jì)算機(jī)組成原理
C.礦產(chǎn)挖掘
D.人工智能
A.分類
B.回歸
C.模式發(fā)現(xiàn)
D.模式匹配
A.決定要使用的表示的特征和結(jié)構(gòu)
B.決定如何量化和比較不同表示擬合數(shù)據(jù)的好壞
C.選擇一個(gè)算法過程使評(píng)分函數(shù)最優(yōu)
D.決定用什么樣的數(shù)據(jù)管理原則以高效地實(shí)現(xiàn)算法
最新試題
使用偏差較小的模型總是比偏差較大的模型更好。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。