問(wèn)答題設(shè)A是n階方陣,且滿(mǎn)足R(E+A)+R(E-A)=n,證明:A2=E。
您可能感興趣的試卷
最新試題
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
題型:填空題
設(shè)A為n階實(shí)對(duì)稱(chēng)矩陣,C是n階是可逆矩陣,且B=CTAC,則()
題型:?jiǎn)雾?xiàng)選擇題
若A為n階可逆矩陣,則R(A)=()。
題型:填空題
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:?jiǎn)雾?xiàng)選擇題
若矩陣A=的秩r(A)=2,則t=() 。
題型:填空題
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
題型:判斷題
A、B、C為n階矩陣,E為單位矩陣,滿(mǎn)足ABC=E,則下列成立的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為四階方陣,且滿(mǎn)足秩r(A)+秩r(A·E)=4,則A2=()。
題型:填空題
若A和B是同階相似方陣,則A和B具有相同的特征值。()
題型:判斷題