問答題
利用施密特正交化方法,將下列向量組化為正交的單位向量組。
α1=(1,1,1,1)T,α2=(3,3,-1,-1)T,α3=(-2,0,6,8)T
您可能感興趣的試卷
你可能感興趣的試題
最新試題
設(shè)A為3階實(shí)對(duì)稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
若A和B是同階相似方陣,則A和B具有相同的特征值。()
題型:判斷題
若n階方陣A是正交陣,則下列結(jié)論錯(cuò)誤的是()
題型:?jiǎn)雾?xiàng)選擇題
A、B、C為n階矩陣,E為單位矩陣,滿足ABC=E,則下列成立的是()
題型:?jiǎn)雾?xiàng)選擇題
如果A2-6A=E,則A-1=()
題型:?jiǎn)雾?xiàng)選擇題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
求方程組的基礎(chǔ)解系和通解。
題型:?jiǎn)柎痤}
若α1,α2是非齊次線性方程組AX=β的兩個(gè)線性無關(guān)的解,以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
向量組的一個(gè)極大線性無關(guān)組可以取為()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}