根據(jù)熱力學第一定律對微小變化的數(shù)學表達式:dQ=dE+dA
試就我們討論過的簡單過程分別說明:
①系統(tǒng)在哪些變化過程dQ為正?在哪些過程dQ為負?
②在哪些過程dE為正?在哪些過程dE為負?
③能否三者同時為正?能否同時為負?
您可能感興趣的試卷
最新試題
1 mol雙原子分子理想氣體從狀態(tài)A(p1,V1)沿p-V圖所示直線變化到狀態(tài)B(p2,V2),試求: (1) 氣體的內(nèi)能增量. (2) 氣體對外界所作的功. (3) 氣體吸收的熱量. (4) 此過程的摩爾熱容. (摩爾熱容C =△Q/△T,其中△Q表示1mol物質(zhì)在過程中升高溫度△T時所吸收的熱量.)
1 mol理想氣體在T1=400K的高溫熱源與T2=300K的低溫熱源間作卡諾循環(huán)(可逆的),在400K的等溫線上起始體積為V1=0.001m3,終止體積為V2=0.005 m3,試求此氣體在每一循環(huán)中 (1) 從高溫熱源吸收的熱量Q1 (2) 氣體所作的凈功W (3) 氣體傳給低溫熱源的熱量Q2
如圖所示,有一定量的理想氣體,從初狀態(tài)a(p1,V1)開始,經(jīng)過一個等體過程達到壓強為p1/4的b態(tài),再經(jīng)過一個等壓過程達到狀態(tài)c,最后經(jīng)等溫過程而完成一個循環(huán).求該循環(huán)過程中系統(tǒng)對外作的功W和所吸的熱量Q.
分析蒸汽參數(shù)變化對蒸汽動力循環(huán)熱效率的影響?
一定量的氦氣(理想氣體),原來的壓強為p1=1atm,溫度為T1= 300K,若經(jīng)過一絕熱過程,使其壓強增加到p2= 32atm.求: (1) 末態(tài)時氣體的溫度T2. (2) 末態(tài)時氣體分子數(shù)密度n. (玻爾茲曼常量 k =1.38×10-23 J·K-1,1atm=1.013×105Pa )
一定量的某單原子分子理想氣體裝在封閉的汽缸里.此汽缸有可活動的活塞(活塞與氣缸壁之間無摩擦且無漏氣).已知氣體的初壓強p1=1atm,體積V1=1L,現(xiàn)將該氣體在等壓下加熱直到體積為原來的兩倍,然后在等體積下加熱直到壓強為原來的2倍,最后作絕熱膨脹,直到溫度下降到初溫為止,(1) 在p-V圖上將整個過程表示出來. (2) 試求在整個過程中氣體內(nèi)能的改變. (3) 試求在整個過程中氣體所吸收的熱量.(1atm=1.013×105Pa) (4) 試求在整個過程中氣體所作的功.
一卡諾熱機(可逆的),當高溫熱源的溫度為127℃、低溫熱源溫度為27℃時,其每次循環(huán)對外作凈功8000 J.今維持低溫熱源的溫度不變,提高高溫熱源溫度,使其每次循環(huán)對外作凈功 10000 J.若兩個卡諾循環(huán)都工作在相同的兩條絕熱線之間,試求: (1) 第二個循環(huán)的熱機效率; (2) 第二個循環(huán)的高溫熱源的溫度.
如圖所示,AB、DC是絕熱過程,CEA是等溫過程,BED是任意過程,組成一個循環(huán)。若圖中EDCE所包圍的面積為70 J,EABE所包圍的面積為30 J,過程中系統(tǒng)放熱100 J,求BED過程中系統(tǒng)吸熱為多少?
1mol氦氣作如圖所示的可逆循環(huán)過程,其中ab和cd是絕熱過程,bc和da為等體過程,已知 V1 = 16.4 L,V2 = 32.8 L,pa = 1 atm,p = 3.18 atm,pc = 4 atm,pd = 1.26 atm,試求: (1)在各態(tài)氦氣的溫度. (2)在態(tài)氦氣的內(nèi)能. (3)在一循環(huán)過程中氦氣所作的凈功. (1atm = 1.013×105 Pa) (普適氣體常量R = 8.31 J· mol-1· K-1)
0.02 kg的氦氣(視為理想氣體),溫度由17℃升為27℃.若在升溫過程中,(1) 體積保持不變;(2) 壓強保持不變;(3) 不與外界交換熱量;試分別求出氣體內(nèi)能的改變、吸收的熱量、外界對氣體所作的功. (普適氣體常量R =8.31J.mol-1.K-1)