設(shè)L為|x|+|y|=1正向一周,則(-ydx+xdy)/(|x|+|y|)的值為:()
A.2
B.1
C.0
D.4
您可能感興趣的試卷
你可能感興趣的試題
曲線積分-2x3ydx+x2y2dy,其中L是由不等式x2+y2≥1及x2+y2≤2y所確定的區(qū)域D的正向邊界,則其值為:()
A.0
B.1
C.2π
D.π
設(shè)L是圓周x2+y2=a2(a>0)負(fù)向一周,則曲線積分(x3-x2y)dx+(xy3-y3)dy的值為:()
A.πa4
B.-πa4
C.-(π/2)a4
D.(π/2)a4
曲線積分(3dx+dy)/(|x|+|y|),其中L為由點(1,0)經(jīng)(0,1)至(-1,0)的折線,則其值是:()
A.-4
B.-2
C.0
D.-6
曲線積分,其中L是從A(0,0)沿y=sinx到點B(π/2,1)的曲線段,則其值是:()
A.1-e
B.e
C.2(e-1)
D.0
L是區(qū)域D:x2+y2≤-2x的正向周界,則(x3-y)dx+(x-y2)dy等于:()
A.2π
B.0
C.(3/2)π
D.-2π
最新試題
設(shè)D是由不等式|x|+|y|≤1所確定的有界區(qū)域,則二重積分|x|dxdy的值是:()
下列各組函數(shù)中,是相同的函數(shù)的是()
下列定積分為零的是()
收斂的數(shù)列必有界.
曲面z=y+lnx/z在點(1,1,1)處的法線方程是:()
積分的值等于:()
曲面z=x2+y2在(-1,2,5)處的切平面方程是:()
若連續(xù)函數(shù)y=f(x)在x0點不可導(dǎo),則曲線y=f(x)在(x0,f(x0))點沒有切線.
設(shè)L是從A(1,0)到B(-1,2)的線段,則曲線積分(x+y)ds等于:()
設(shè)單調(diào)可微函數(shù)f(x)的反函數(shù)為g(x),f(1)=3,f′(1)=2,f″(3)=6則g′(3)=()