A.模型
B.模式
C.模范
D.模具
您可能感興趣的試卷
你可能感興趣的試題
A.JP聚類擅長處理噪聲和離群點,并且能夠處理不同大小、形狀和密度的簇
B.JP算法對高維數(shù)據(jù)效果良好,尤其擅長發(fā)現(xiàn)強相關(guān)對象的緊致簇
C.JP聚類是基于SNN相似度的概念
D.JP聚類的基本時間復雜度為O(m)
A.概率
B.鄰近度
C.密度
D.聚類
A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
A.當簇只包含少量數(shù)據(jù)點,或者數(shù)據(jù)點近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因為它可以使用各種類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點時不會存在問題
A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
最新試題
根據(jù)數(shù)據(jù)科學家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應的存儲系統(tǒng)。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
隨機梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
任務(wù)調(diào)度系統(tǒng)的設(shè)計與實現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標從目標源獲取數(shù)據(jù)。
當數(shù)據(jù)集標簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
支持向量機不適合大規(guī)模數(shù)據(jù)。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機手段來完成。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。