問答題證明:n階反對稱矩陣可逆的必要條件是n為偶數(shù),舉例說明n為偶數(shù)不是n階反對稱矩陣可逆的充分條件。
您可能感興趣的試卷
最新試題
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對于s和r,當(dāng)()時向量組線性無關(guān);當(dāng)()時向量組線性相關(guān)。
題型:填空題
設(shè)A=,B=,C=,則(A+B)C=()
題型:填空題
設(shè)A為3階實(shí)對稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
試問a為何值時,向量組α=(1,0,-1,2),β=(0,2,a,3),γ=(-1,a,a+1,a-2)線性相關(guān)。
題型:問答題
設(shè)A為四階方陣,且滿足秩r(A)+秩r(A·E)=4,則A2=()。
題型:填空題
求方程組的基礎(chǔ)解系和通解。
題型:問答題
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
題型:判斷題
向量組的一個極大線性無關(guān)組可以取為()
題型:單項(xiàng)選擇題
若α1,α2是非齊次線性方程組AX=β的兩個線性無關(guān)的解,以下結(jié)論正確的是()
題型:單項(xiàng)選擇題
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:單項(xiàng)選擇題