A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
您可能感興趣的試卷
你可能感興趣的試題
A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
A.NP={L∣L是一個能在非多項式時間內(nèi)被一臺NDTM所接受的語言}
B.NP={L∣L是一個能在非多項式時間內(nèi)被一臺DTM所接受的語言}
C.NP={L∣L是一個能在多項式時間內(nèi)被一臺DTM所接受的語言}
D.NP={L∣L是一個能在多項式時間內(nèi)被一臺NDTM所接受的語言}
A.k帶圖靈機處理所有長度為n的輸入時,在某條帶上所使用過的最大方格數(shù)
B.k帶圖靈機處理所有長度為n的輸入時,在k條帶上所使用過的方格數(shù)的總和
C.k帶圖靈機處理所有長度為n的輸入時,在k條帶上所使用過的平均方格數(shù)
D.k帶圖靈機處理所有長度為n的輸入時,在某條帶上所使用過的最小方格數(shù)
A.廣度優(yōu)先分支限界法與深度優(yōu)先分支限界法
B.隊列式(FIFO)分支限界法與堆棧式分支限界法
C.排列樹法與子集樹法
D.隊列式(FIFO)分支限界法與優(yōu)先隊列式分支限界法
A.產(chǎn)生x[k]的時間
B.滿足顯約束的x[k]值的個數(shù)
C.問題的解空間的形式
D.計算上界函數(shù)bound的時間
E.滿足約束函數(shù)和上界函數(shù)約束的所有x[k]的個數(shù)
F.計算約束函數(shù)constraint的時間
最新試題
貪心算法總是做出在當前看來()的選擇。也就是說貪心算法并不從整體最優(yōu)考慮,它所做出的選擇只是在某種意義上的()。
許多可以用貪心算法求解的問題一般具有2個重要的性質:()性質和()性質。
一個算法就是一個有窮規(guī)則的集合,其中之規(guī)則規(guī)定了解決某一特殊類型問題的一系列運算,此外,算法還應具有以下五個重要特性:()、()、()、()、()。
何謂最優(yōu)子結構性質?
算法就是一組有窮的(),它們規(guī)定了解決某一特定類型問題的()。
算法的復雜性有()和()之分,衡量一個算法好壞的標準是()。
某一問題可用動態(tài)規(guī)劃算法求解的顯著特征是()。
寫出最優(yōu)二叉搜索樹問題的動態(tài)規(guī)劃算法(設函數(shù)名binarysearchtree))。
何謂P、NP、NPC問題?