A.dS=δQ/T環(huán)必為可逆過程或處于平衡狀態(tài);
B.dS>δQ/T環(huán)必為不可逆過程;
C.dS>δQ/T環(huán)必為自發(fā)過程;
D.dS<δQ/T環(huán)環(huán)違反卡諾定理和第二定律,過程不可能自發(fā)發(fā)生。
您可能感興趣的試卷
你可能感興趣的試題
A.跑的最快;
B.跑的最慢;
C.夏天跑的快;
D.冬天跑的快。
A.恒壓過程;
B.絕熱過程;
C.恒溫過程;
D.可逆相變過程。
最新試題
一定量的某單原子分子理想氣體裝在封閉的汽缸里.此汽缸有可活動的活塞(活塞與氣缸壁之間無摩擦且無漏氣).已知?dú)怏w的初壓強(qiáng)p1=1atm,體積V1=1L,現(xiàn)將該氣體在等壓下加熱直到體積為原來的兩倍,然后在等體積下加熱直到壓強(qiáng)為原來的2倍,最后作絕熱膨脹,直到溫度下降到初溫為止,(1) 在p-V圖上將整個過程表示出來. (2) 試求在整個過程中氣體內(nèi)能的改變. (3) 試求在整個過程中氣體所吸收的熱量.(1atm=1.013×105Pa) (4) 試求在整個過程中氣體所作的功.
1mol氦氣作如圖所示的可逆循環(huán)過程,其中ab和cd是絕熱過程,bc和da為等體過程,已知 V1 = 16.4 L,V2 = 32.8 L,pa = 1 atm,p = 3.18 atm,pc = 4 atm,pd = 1.26 atm,試求: (1)在各態(tài)氦氣的溫度. (2)在態(tài)氦氣的內(nèi)能. (3)在一循環(huán)過程中氦氣所作的凈功. (1atm = 1.013×105 Pa) (普適氣體常量R = 8.31 J· mol-1· K-1)
一定量的理想氣體,由狀態(tài)a經(jīng)b到達(dá)c.(如圖,abc為一直線)求此過程中(1) 氣體對外作的功; (2) 氣體內(nèi)能的增量; (3) 氣體吸收的熱量.(1atm=1.013×105Pa)
一定量的某種理想氣體進(jìn)行如圖所示的循環(huán)過程.已知?dú)怏w在狀態(tài)A的溫度為TA=300 K,求 (1) 氣體在狀態(tài)B、C的溫度; (2) 各過程中氣體對外所作的功; (3) 經(jīng)過整個循環(huán)過程,氣體從外界吸收的總熱量(各過程吸熱的代數(shù)和).
分析蒸汽參數(shù)變化對蒸汽動力循環(huán)熱效率的影響?
1mol的理想氣體,完成了由兩個等體過程和兩個等壓過程構(gòu)成的循環(huán)過程(如圖),已知狀態(tài)1的溫度為T1,狀態(tài)3的溫度為T3,且狀態(tài)2和4在同一條等溫線上.試求氣體在這一循環(huán)過程中作的功.
氣缸內(nèi)貯有36g水蒸汽(視為剛性分子理想氣體),經(jīng)abcda循環(huán)過程如圖所示.其中a-b、c-d為等體過程,b-c為等溫過程,d-a為等壓過程.試求: (1)d-a過程中水蒸氣作的功Wda(2)a-b過程中水蒸氣內(nèi)能的增量Eab(3)循環(huán)過程水蒸汽作的凈功W(4)循環(huán)效率(注:循環(huán)效率=W/Q1,W為循環(huán)過程水蒸汽對外作的凈功,Q1為循環(huán)過程水蒸汽吸收的熱量,1atm= 1.013×105Pa)
0.02 kg的氦氣(視為理想氣體),溫度由17℃升為27℃.若在升溫過程中,(1) 體積保持不變;(2) 壓強(qiáng)保持不變;(3) 不與外界交換熱量;試分別求出氣體內(nèi)能的改變、吸收的熱量、外界對氣體所作的功. (普適氣體常量R =8.31J.mol-1.K-1)
一定量的氦氣(理想氣體),原來的壓強(qiáng)為p1=1atm,溫度為T1= 300K,若經(jīng)過一絕熱過程,使其壓強(qiáng)增加到p2= 32atm.求: (1) 末態(tài)時氣體的溫度T2. (2) 末態(tài)時氣體分子數(shù)密度n. (玻爾茲曼常量 k =1.38×10-23 J·K-1,1atm=1.013×105Pa )
一卡諾熱機(jī)(可逆的),當(dāng)高溫?zé)嵩吹臏囟葹?27℃、低溫?zé)嵩礈囟葹?7℃時,其每次循環(huán)對外作凈功8000 J.今維持低溫?zé)嵩吹臏囟炔蛔?,提高高溫?zé)嵩礈囟龋蛊涿看窝h(huán)對外作凈功 10000 J.若兩個卡諾循環(huán)都工作在相同的兩條絕熱線之間,試求: (1) 第二個循環(huán)的熱機(jī)效率; (2) 第二個循環(huán)的高溫?zé)嵩吹臏囟龋?/p>