問答題用施密特正交化方法將α1=(1,-1,0)T,α2=(1,0,1)T,α3=(1,-1,1)T向量組化為標(biāo)準(zhǔn)正交向量組。
您可能感興趣的試卷
最新試題
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
題型:?jiǎn)雾?xiàng)選擇題
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線性無關(guān)組。
題型:?jiǎn)柎痤}
若A為n階可逆矩陣,則R(A)=()。
題型:填空題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A=則A=()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)矩陣B滿足方程B=,求矩陣B。
題型:?jiǎn)柎痤}
下列命題錯(cuò)誤的是()
題型:?jiǎn)雾?xiàng)選擇題
若α1,α2是非齊次線性方程組AX=β的兩個(gè)線性無關(guān)的解,以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
求方程組的基礎(chǔ)解系和通解。
題型:?jiǎn)柎痤}
關(guān)于初等矩陣下列結(jié)論成立的是()
題型:?jiǎn)雾?xiàng)選擇題