問(wèn)答題己知n階矩陣A,滿足A2-3A-2E=0,求證:A可逆,并求A-1。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
題型:判斷題
相似的兩個(gè)矩陣一定相等。()
題型:判斷題
A、B、C為n階矩陣,E為單位矩陣,滿足ABC=E,則下列成立的是()
題型:?jiǎn)雾?xiàng)選擇題
若n階方陣A是正交陣,則下列結(jié)論錯(cuò)誤的是()
題型:?jiǎn)雾?xiàng)選擇題
求方程組的基礎(chǔ)解系和通解。
題型:?jiǎn)柎痤}
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線性無(wú)關(guān);當(dāng)()時(shí)向量組線性相關(guān)。
題型:填空題
已知n階行列式=0,則下列表述正確的是()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為3階實(shí)對(duì)稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
設(shè)A為n階實(shí)對(duì)稱矩陣,C是n階是可逆矩陣,且B=CTAC,則()
題型:?jiǎn)雾?xiàng)選擇題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題