問答題設(shè)A為n階矩陣,滿足A2=A,證明:(A+I)n=I+(2n-1)A(n為正整數(shù))。
您可能感興趣的試卷
最新試題
設(shè)A=,B=,C=,則(A+B)C=()
題型:填空題
如果A2-6A=E,則A-1=()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)矩陣B滿足方程B=,求矩陣B。
題型:?jiǎn)柎痤}
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)行列式D1=,D2=,則D1與D2的關(guān)系為()。
題型:填空題
設(shè)A=則A=()
題型:?jiǎn)雾?xiàng)選擇題
求方程組的基礎(chǔ)解系和通解。
題型:?jiǎn)柎痤}
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}
A、B、C為n階矩陣,E為單位矩陣,滿足ABC=E,則下列成立的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
題型:填空題