問答題

.


您可能感興趣的試卷

你可能感興趣的試題

最新試題

在某次海軍演習中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()海里。

題型:填空題

高中"等差數(shù)列"設(shè)定的教學目標如下:①通過實例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應的問題,體會等差數(shù)列與一次函數(shù)的關(guān)系:③讓學生對日常生活中的實際問題進行分析,引導學生通過觀察,推導,歸納抽象出等差數(shù)列的概念:由學生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進行等差數(shù)列通項公式應用的實踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達式得到對等差數(shù)列相應問題的研究。完成下列任務:(1)根據(jù)教學目標①,給出至少三個實例,并說明設(shè)計意圖;(2)根據(jù)教學目標②,設(shè)計至少兩個問題,讓學生用等差數(shù)列求解,并說明設(shè)計意圖;(3)確定本節(jié)課的教學重點;(4)作為高中階段的重點內(nèi)容,其難點是什么?(5)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學期望。

題型:問答題

案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學會納悶,今天老師上數(shù)學課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談談數(shù)學教學過程中怎樣調(diào)動學生的學習熱情激發(fā)學習興趣。

題型:問答題

已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點D,從每條曲線上取兩個點,將其坐標記錄于下表中:(1)求C1、C2的標準方程:(2)請問是否存在直線L滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。

題型:問答題

為什么在數(shù)學教學中要貫徹理論與實際相結(jié)合的原則?

題型:問答題

高中"隨機抽樣"設(shè)定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據(jù)教學目標①,設(shè)計至少兩個問題,并說明設(shè)計意圖;(2)根據(jù)教學目標②,給出至少兩個實例,并說明設(shè)計意圖;(3)根據(jù)教學目標③,設(shè)計問題鏈(至少包含兩個問題),并說明設(shè)計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?

題型:問答題

已知,,(1)求tan2α的值:(2)求β。

題型:問答題

一商家銷售某種商品的價格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?

題型:問答題

請以"直線與平面平行的判定"為課題,完成下列教學設(shè)計。(1)教學目標(2)本節(jié)課的教學重、難點(3)寫出新課引入和新知探究、鞏固、應用等及設(shè)計意圖

題型:問答題