請(qǐng)以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。
(1)教學(xué)目標(biāo)
(2)本節(jié)課的教學(xué)重、難點(diǎn)
(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖
您可能感興趣的試卷
你可能感興趣的試題
最新試題
為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?
已知,,(1)求tan2α的值:(2)求β。
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
請(qǐng)簡(jiǎn)要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。
案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。
一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤(rùn)時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?