問答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足
(1)當(dāng)x∈(0,x1)時,證明x;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。


您可能感興趣的試卷

你可能感興趣的試題

最新試題

已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點D,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請問是否存在直線L滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。

題型:問答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系。已知點A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。

題型:問答題

一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。

題型:問答題

設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足

題型:問答題

案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。

題型:問答題

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項和Tn。

題型:問答題

一商家銷售某種商品的價格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?

題型:問答題

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實際相結(jié)合的原則?

題型:問答題

案例:某教師在對基本初等函數(shù)進(jìn)行教學(xué)時,給學(xué)生出了如下一道練習(xí)題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。

題型:問答題

高中"集合與函數(shù)概念實習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;②體驗合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;③在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實踐技能和民主價值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計一個合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點和難點;(3)給出本節(jié)課的教學(xué)過程。

題型:問答題