問答題
設(shè)n階實(shí)對(duì)稱矩陣A的秩為r,試證明:
存在可逆矩陣C,使得CTAC=diag(d1,…,di,0,…,0)(d1≠0,i=1,2,…,r).您可能感興趣的試卷
你可能感興趣的試題
最新試題
設(shè)A=,B=,C=,則(A+B)C=()
題型:填空題
下列矩陣必相似于對(duì)角矩陣的是()
題型:?jiǎn)雾?xiàng)選擇題
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線性無關(guān)組。
題型:?jiǎn)柎痤}
若A為n階可逆矩陣,則R(A)=()。
題型:填空題
若α1,α2,β線性無關(guān),以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為3階實(shí)對(duì)稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
已知n元非齊次線性方程AX=b,AX=0為方程AX=b對(duì)應(yīng)的齊次線性方程組,則有()。
題型:?jiǎn)雾?xiàng)選擇題
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:?jiǎn)雾?xiàng)選擇題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
若α1,α2是非齊次線性方程組AX=β的兩個(gè)線性無關(guān)的解,以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題