一卡諾循環(huán)的熱機,高溫熱源溫度是400K.每一循環(huán)從此熱源吸進100J熱量并向一低溫熱源放出80J熱量.求:
(1)低溫熱源溫度;
(2)這循環(huán)的熱機效率.
您可能感興趣的試卷
你可能感興趣的試題
最新試題
1mol氦氣作如圖所示的可逆循環(huán)過程,其中ab和cd是絕熱過程,bc和da為等體過程,已知 V1 = 16.4 L,V2 = 32.8 L,pa = 1 atm,p = 3.18 atm,pc = 4 atm,pd = 1.26 atm,試求: (1)在各態(tài)氦氣的溫度. (2)在態(tài)氦氣的內能. (3)在一循環(huán)過程中氦氣所作的凈功. (1atm = 1.013×105 Pa) (普適氣體常量R = 8.31 J· mol-1· K-1)
一定量的某單原子分子理想氣體裝在封閉的汽缸里.此汽缸有可活動的活塞(活塞與氣缸壁之間無摩擦且無漏氣).已知氣體的初壓強p1=1atm,體積V1=1L,現將該氣體在等壓下加熱直到體積為原來的兩倍,然后在等體積下加熱直到壓強為原來的2倍,最后作絕熱膨脹,直到溫度下降到初溫為止,(1) 在p-V圖上將整個過程表示出來. (2) 試求在整個過程中氣體內能的改變. (3) 試求在整個過程中氣體所吸收的熱量.(1atm=1.013×105Pa) (4) 試求在整個過程中氣體所作的功.
如果一定量的理想氣體,其體積和壓強依照的規(guī)律變化,其中a為已知常量.試求: (1) 氣體從體積V1膨脹到V2所作的功; (2) 氣體體積為V1時的溫度T1與體積為V2時的溫度T2之比.
一定量的氦氣(理想氣體),原來的壓強為p1=1atm,溫度為T1= 300K,若經過一絕熱過程,使其壓強增加到p2= 32atm.求: (1) 末態(tài)時氣體的溫度T2. (2) 末態(tài)時氣體分子數密度n. (玻爾茲曼常量 k =1.38×10-23 J·K-1,1atm=1.013×105Pa )
簡述開口系統(tǒng)、封閉系統(tǒng)、絕熱系統(tǒng)和孤立系統(tǒng)各有什么特點?
一定量的理想氣體,從A態(tài)出發(fā),經p-V圖中所示的過程到達B態(tài),試求在這過程中,該氣體吸收的熱量.
熱絕緣材料應具有哪些性能?
如圖所示,AB、DC是絕熱過程,CEA是等溫過程,BED是任意過程,組成一個循環(huán)。若圖中EDCE所包圍的面積為70 J,EABE所包圍的面積為30 J,過程中系統(tǒng)放熱100 J,求BED過程中系統(tǒng)吸熱為多少?
闡述角系數的定義及其特性?
一定量的某種理想氣體,開始時處于壓強、體積、溫度分別為p0=1.2×106Pa,V0=8.31×10-3m3,T0=300K的初態(tài),后經過一等體過程,溫度升高到T1=450K,再經過一等溫過程,壓強降到p=p0的末態(tài)。已知該理想氣體的等壓摩爾熱容與等體摩爾熱容之比Cp/CV=5/3。求:(1) 該理想氣體的等壓摩爾熱容Cp和等體摩爾熱容CV。(2) 氣體從始態(tài)變到末態(tài)的全過程中從外界吸收的熱量。(普適氣體常量R=8.31 J·mol-1·K-1)