給出復(fù)合函數(shù)f(x)=1+e-xsin4x的數(shù)據(jù)表:
分別用復(fù)化梯形、復(fù)化Simpson求積公式和Cotes求積公式計(jì)算積分的近似值。
您可能感興趣的試卷
你可能感興趣的試題
確定求積公式:的未知參數(shù)使其代數(shù)精度盡可能地高,并指明其具有的代數(shù)精度(提示:注意利用求積公式的節(jié)點(diǎn)對(duì)稱結(jié)構(gòu))。
確定求積公式:的未知參數(shù)使其代數(shù)精度盡可能地高,并指明其具有的代數(shù)精度(提示:注意利用求積公式的節(jié)點(diǎn)對(duì)稱結(jié)構(gòu))。
確定求積公式:的未知參數(shù)使其代數(shù)精度盡可能地高,并指明其具有的代數(shù)精度(提示:注意利用求積公式的節(jié)點(diǎn)對(duì)稱結(jié)構(gòu))。
最新試題
常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。
是A的相應(yīng)λi的特征向量,是A的相應(yīng)λj的特征向量。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.2,精確解為y=x+e-x。
常微分方程y″+16*y′+15*y=sin(2t+1),y(0)=α,y′(0)=β為()方程組。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2,首先利用精確解表達(dá)式y(tǒng)=x+e-x,計(jì)算出啟動(dòng)值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應(yīng)用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5
試求出矩陣的所有精確特征值和特征向量;并回答特征向量是線性相關(guān)還是線性無關(guān)?
寫出求解常微分方程初值問題,y(0)=2,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.4。
試以冪法求出如下矩陣的對(duì)應(yīng)于特征值λ=4的特征向量:;取初始向量;
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
常微分方程y″+3*y′+2*y=sinx,y(0)=α,y′(0)=β為()方程組。