分別用Jacobi迭代和Gauss-Seidel迭代法求解方程組:,寫(xiě)出迭代序列,迭代迭代1步獲得近似解。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
常微分方程y″+16*y′+15*y=sin(2t+1),y(0)=α,y′(0)=β為()方程組。
用隱式單步法格式求解常微分方程初值問(wèn)題,y(0)=1。其中斜率,試確定其絕對(duì)穩(wěn)定區(qū)間。
常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。
試以?xún)绶ㄇ蟪鋈缦戮仃嚨膶?duì)應(yīng)于特征值λ=4的特征向量:;取初始向量;
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=0,0≤x≤4的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.1,精確解為。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=0的Euler格式;精確解為。
寫(xiě)出求解常微分方程初值問(wèn)題,y(1)=1,1≤x≤1.2的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=1.1。
試以?xún)绶ǖ蟪鋈缦戮仃嚨闹魈卣髦担W畲蟮奶卣髦担?lambda;1和相應(yīng)的特征向量:;取初始向量。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.02,計(jì)算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。