您可能感興趣的試卷
你可能感興趣的試題
最新試題
某車間有400臺(tái)同類型機(jī)器,工作相互獨(dú)立,每臺(tái)機(jī)器需要的電功率為θ瓦,由于工藝關(guān)系,每臺(tái)機(jī)器開動(dòng)時(shí)間占工作總時(shí)間的3/4,問應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?
設(shè)燈泡使用時(shí)數(shù)X~N(μ,σ2),為了估計(jì)期望μ和方差σ2,共測(cè)試了10個(gè)燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
求矩陣的逆矩陣。
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)
樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計(jì)算樣本平均值和樣本方差。
某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。
某電視臺(tái)廣告部稱某類企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤(rùn)增加量)至少為15萬元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬元,標(biāo)準(zhǔn)差3.4萬元。試在α=0.05的水平下判斷該廣告部的說法是否正確?
樣本值:54,67,68,78,70,66,67,70,65,69,分別計(jì)算樣本平均值和樣本方差。
求矩陣的逆矩陣:
設(shè)隨機(jī)變量ξ的分布列為,求E(ξ),E(-ξ+1),E(ξ2)