問答題為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?

您可能感興趣的試卷

最新試題

某車間有400臺(tái)同類型機(jī)器,工作相互獨(dú)立,每臺(tái)機(jī)器需要的電功率為θ瓦,由于工藝關(guān)系,每臺(tái)機(jī)器開動(dòng)時(shí)間占工作總時(shí)間的3/4,問應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?

題型:?jiǎn)柎痤}

設(shè)燈泡使用時(shí)數(shù)X~N(μ,σ2),為了估計(jì)期望μ和方差σ2,共測(cè)試了10個(gè)燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:?jiǎn)柎痤}

求矩陣的逆矩陣。

題型:?jiǎn)柎痤}

根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)

題型:?jiǎn)柎痤}

樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計(jì)算樣本平均值和樣本方差。

題型:?jiǎn)柎痤}

某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。

題型:?jiǎn)柎痤}

某電視臺(tái)廣告部稱某類企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤(rùn)增加量)至少為15萬元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬元,標(biāo)準(zhǔn)差3.4萬元。試在α=0.05的水平下判斷該廣告部的說法是否正確?

題型:?jiǎn)柎痤}

樣本值:54,67,68,78,70,66,67,70,65,69,分別計(jì)算樣本平均值和樣本方差。

題型:?jiǎn)柎痤}

求矩陣的逆矩陣:

題型:?jiǎn)柎痤}

設(shè)隨機(jī)變量ξ的分布列為,求E(ξ),E(-ξ+1),E(ξ2)

題型:?jiǎn)柎痤}