問(wèn)答題

設(shè)隨機(jī)變量ξ的分布列為,求E(ξ),E(-ξ+1),E(ξ2


您可能感興趣的試卷

最新試題

某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過(guò)10次的概率。

題型:?jiǎn)柎痤}

設(shè)X1,X2,…,Xn是總體X的一個(gè)樣本,試證和都是總體均值的無(wú)偏估計(jì),并判斷哪一個(gè)比較有效。

題型:?jiǎn)柎痤}

為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類(lèi)型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問(wèn)至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?

題型:?jiǎn)柎痤}

求下列矩陣的秩:

題型:?jiǎn)柎痤}

設(shè)燈泡使用時(shí)數(shù)X~N(μ,σ2),為了估計(jì)期望μ和方差σ2,共測(cè)試了10個(gè)燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:?jiǎn)柎痤}

求矩陣的逆矩陣:

題型:?jiǎn)柎痤}

設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。

題型:?jiǎn)柎痤}

一顆均勻的骰子連續(xù)擲100次,求擲出點(diǎn)數(shù)之和在300到400之間的概率。

題型:?jiǎn)柎痤}

某學(xué)校600名學(xué)生參加計(jì)算機(jī)應(yīng)用課程考試的成績(jī)近似地服從N(75,82)試估計(jì)成績(jī)?cè)赱90,100],[70,80),[0,60)分?jǐn)?shù)段內(nèi)的人數(shù)。

題型:?jiǎn)柎痤}

甲乙兩臺(tái)機(jī)床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計(jì)出甲乙機(jī)床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺(tái)機(jī)床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。

題型:?jiǎn)柎痤}